RESULTS support a post-shear ore deposition model for both Ernie Junior and Ernest Henry.

Bearing Fluids
Structural control within bounding Footwall and Hangingwall shear zones. SE-ESE dipping, NE striking foliations.

Deformation fabrics are consistent across Ernie Junior and Ernest Henry indicating commonly oriented deformation fabrics are consistent across Ernie Junior and Ernest Henry.

DistribuQon
DistribuQon of the Ernest Henry Volcanics in the Mt Fort Const anQne Volcanics Ernie Junior and Ernest Henry are hosted in the same Mt Fort.

Const anQne Volcanics
Ernie Junior and Ernest Henry are located at the core of intense distribuQon of the Ernest Henry ore body.

Vein hosted ore
Copper elevation corresponding to k-feldspar alteration with higher Cu-Au grades.

Matrix hosted ore
Variable dip of 10-80° to the SE-SSE.

Clast-supported breccia
Majority of breccia is clast-supported compared to the matrix-hosted brecciation at the core of Ernest Henry.

Foliation
Foliated in proximity to the footwall shear zone and replacement textures, and subsequent ore infill along pre-existing foliaQons.

Foliation
Foliation correlates with previous observations of the Footwall shear zone (Tywerould, 1997), recently characterised interstitial shear (O’Brien, 2016) and overprinting NE-dipping, 5E dip-slip foliation in Ernie Junior and replacement. Silicate veins indicate that they formed before k-feldspar alteration and consist of bornite and chalcopyrite.

K-feldspar alteration
K-feldspar rich alteration associated with brecciation and competency contrast with bounding shear zones.

Copper elevation
K-feldspar rich alteration associated with breccia.

Conclusions
Ernie Junior is hosted within the same variably altered volcanics as Ernest Henry. Both ore bodies lie at the core of intense k-feldspar alteration in breccia.

Paragenesis
The paragenesis of Ernie Junior paragenesis and Ernest Henry are consistent and largely controlled by successive alteration phases and infill of one phase mineralisation in breccia, central to the most intense k-feldspar alteration.

Accessory minerals
The ore assemblage of Ernie Junior consists of chalcopyrite, pyrite, magnetite, calcite, biotite, quartz typical of the Ernest Henry assemblage. Ernie Junior ore is observed in both veins and breccia.

Vein hosted ore
Matrix-hosted ore is disseminated with finer chalcopyrite grains.

Conclusions
- Ernie Junior is hosted within the same variably altered volcanics as Ernest Henry. Both ore bodies lie at the core of intense k-feldspar alteration in breccia.
- The parageneses of Ernie Junior paragenesis and Ernest Henry are consistent and largely controlled by successive alteration phases and infill of one phase mineralisation in breccia, central to the most intense k-feldspar alteration.
- The ore assemblage of Ernie Junior consists of chalcopyrite, pyrite, magnetite, calcite, biotite, quartz typical of the Ernest Henry assemblage. Ernie Junior ore is observed in both veins and breccia.
- Variable dips of 10-80° to the SE-SSE correlates with previous observations of the Footwall shear zone (Tywerould, 1997), recently characterised interstitial shear (O’Brien, 2016) and overprinting NE-dipping, 5E dip-slip foliation in Ernie Junior and replacement. Silicate veins indicate that they formed before k-feldspar alteration and consist of bornite and chalcopyrite.

Results
Vein hosted ore is coarser grained as compared to matrix-hosted ore in calcite veins.

Measurements
Measurements of foliations within proximity to the Ernie Junior ore body on VMS hosted hydrothermal aureole.

Interpreted evolution of Ernie Junior
Vein hosted matrix-replacement, vein hosted replacement.